Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Paediatr Anaesth ; 34(5): 467-476, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38358320

RESUMO

BACKGROUND: Genetic mitochondrial diseases impact over 1 in 4000 individuals, most often presenting in infancy or early childhood. Seizures are major clinical sequelae in some mitochondrial diseases including Leigh syndrome, the most common pediatric presentation of mitochondrial disease. Dietary ketosis has been used to manage seizures in mitochondrial disease patients. Mitochondrial disease patients often require surgical interventions, leading to anesthetic exposures. Anesthetics have been shown to be toxic in the setting of mitochondrial disease, but the impact of a ketogenic diet on anesthetic toxicities in this setting has not been studied. AIMS: Our aim in this study was to determine whether dietary ketosis impacts volatile anesthetic toxicities in the setting of genetic mitochondrial disease. METHODS: The impact of dietary ketosis on toxicities of volatile anesthetic exposure in mitochondrial disease was studied by exposing young Ndufs4(-/-) mice fed ketogenic or control diet to isoflurane anesthesia. Blood metabolites were measured before and at the end of exposures, and survival and weight were monitored. RESULTS: Compared to a regular diet, the ketogenic diet exacerbated hyperlactatemia resulting from isoflurane exposure (control vs. ketogenic diet in anesthesia mean difference 1.96 mM, Tukey's multiple comparison adjusted p = .0271) and was associated with a significant increase in mortality during and immediately after exposures (27% vs. 87.5% mortality in the control and ketogenic diet groups, respectively, during the exposure period, Fisher's exact test p = .0121). Our data indicate that dietary ketosis and volatile anesthesia interact negatively in the setting of mitochondrial disease. CONCLUSIONS: Our findings suggest that extra caution should be taken in the anesthetic management of mitochondrial disease patients in dietary ketosis.


Assuntos
Anestesia , Anestésicos , Isoflurano , Cetose , Doença de Leigh , Doenças Mitocondriais , Humanos , Criança , Pré-Escolar , Camundongos , Animais , Doença de Leigh/genética , Dieta , Cetose/metabolismo , Convulsões , Complexo I de Transporte de Elétrons/metabolismo
2.
Anesthesiology ; 140(4): 715-728, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147628

RESUMO

BACKGROUND: Volatile anesthetics induce hyperpolarizing potassium currents in spinal cord neurons that may contribute to their mechanism of action. They are induced at lower concentrations of isoflurane in noncholinergic neurons from mice carrying a loss-of-function mutation of the Ndufs4 gene, required for mitochondrial complex I function. The yeast NADH dehydrogenase enzyme, NDi1, can restore mitochondrial function in the absence of normal complex I activity, and gain-of-function Ndi1 transgenic mice are resistant to volatile anesthetics. The authors tested whether NDi1 would reduce the hyperpolarization caused by isoflurane in neurons from Ndufs4 and wild-type mice. Since volatile anesthetic behavioral hypersensitivity in Ndufs4 is transduced uniquely by glutamatergic neurons, it was also tested whether these currents were also unique to glutamatergic neurons in the Ndufs4 spinal cord. METHODS: Spinal cord neurons from wild-type, NDi1, and Ndufs4 mice were patch clamped to characterize isoflurane sensitive currents. Neuron types were marked using fluorescent markers for cholinergic, glutamatergic, and γ-aminobutyric acid-mediated (GABAergic) neurons. Norfluoxetine was used to identify potassium channel type. Neuron type-specific Ndufs4 knockout animals were generated using type-specific Cre-recombinase with floxed Ndufs4. RESULTS: Resting membrane potentials (RMPs) of neurons from NDi1;Ndufs4, unlike those from Ndufs4, were not hyperpolarized by 0.6% isoflurane (Ndufs4, ΔRMP -8.2 mV [-10 to -6.6]; P = 1.3e-07; Ndi1;Ndufs4, ΔRMP -2.1 mV [-7.6 to +1.4]; P = 1). Neurons from NDi1 animals in a wild-type background were not hyperpolarized by 1.8% isoflurane (wild-type, ΔRMP, -5.2 mV [-7.3 to -3.2]; P = 0.00057; Ndi1, ΔRMP, 0.6 mV [-1.7 to 3.2]; P = 0.68). In spinal cord slices from global Ndufs4 animals, holding currents (HC) were induced by 0.6% isoflurane in both GABAergic (ΔHC, 81.3 pA [61.7 to 101.4]; P = 2.6e-05) and glutamatergic (ΔHC, 101.2 pA [63.0 to 146.2]; P = 0.0076) neurons. In neuron type-specific Ndufs4 knockouts, HCs were increased in cholinergic (ΔHC, 119.5 pA [82.3 to 156.7]; P = 0.00019) and trended toward increase in glutamatergic (ΔHC, 85.5 pA [49 to 126.9]; P = 0.064) neurons but not in GABAergic neurons. CONCLUSIONS: Bypassing complex I by overexpression of NDi1 eliminates increases in potassium currents induced by isoflurane in the spinal cord. The isoflurane-induced potassium currents in glutamatergic neurons represent a potential downstream mechanism of complex I inhibition in determining minimum alveolar concentration.


Assuntos
Anestésicos Inalatórios , Isoflurano , Camundongos , Animais , Isoflurano/farmacologia , Anestésicos Inalatórios/farmacologia , Canais de Potássio , Medula Espinal , Camundongos Transgênicos , Interneurônios , Complexo I de Transporte de Elétrons/genética , Colinérgicos
3.
Br J Anaesth ; 131(5): 832-846, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37770252

RESUMO

BACKGROUND: Volatile anaesthetics are widely used in human medicine. Although generally safe, hypersensitivity and toxicity can occur in rare cases, such as in certain genetic disorders. Anaesthesia hypersensitivity is well-documented in a subset of mitochondrial diseases, but whether volatile anaesthetics are toxic in this setting has not been explored. METHODS: We exposed Ndufs4(-/-) mice, a model of Leigh syndrome, to isoflurane (0.2-0.6%), oxygen 100%, or air. Cardiorespiratory function, weight, blood metabolites, and survival were assessed. We exposed post-symptom onset and pre-symptom onset animals and animals treated with the macrophage depleting drug PLX3397/pexidartinib to define the role of overt neuroinflammation in volatile anaesthetic toxicities. RESULTS: Isoflurane induced hyperlactataemia, weight loss, and mortality in a concentration- and duration-dependent manner from 0.2% to 0.6% compared with carrier gas (O2 100%) or mock (air) exposures (lifespan after 30-min exposures ∗P<0.05 for isoflurane 0.4% vs air or vs O2, ∗∗P<0.005 for isoflurane 0.6% vs air or O2; 60-min exposures ∗∗P<0.005 for isoflurane 0.2% vs air, ∗P<0.05 for isoflurane 0.2% vs O2). Isoflurane toxicity was significantly reduced in Ndufs4(-/-) exposed before CNS disease onset, and the macrophage depleting drug pexidartinib attenuated sequelae of isoflurane toxicity (survival ∗∗∗P=0.0008 isoflurane 0.4% vs pexidartinib plus isoflurane 0.4%). Finally, the laboratory animal standard of care of 100% O2 as a carrier gas contributed significantly to weight loss and reduced survival, but not to metabolic changes, and increased acute mortality. CONCLUSIONS: Isoflurane is toxic in the Ndufs4(-/-) model of Leigh syndrome. Toxic effects are dependent on the status of underlying neurologic disease, largely prevented by the CSF1R inhibitor pexidartinib, and influenced by oxygen concentration in the carrier gas.


Assuntos
Anestésicos Inalatórios , Isoflurano , Doença de Leigh , Humanos , Animais , Camundongos , Isoflurano/toxicidade , Anestésicos Inalatórios/toxicidade , Doença de Leigh/genética , Oxigênio , Redução de Peso , Complexo I de Transporte de Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...